
6.838: Shape Analysis, 2021
Instructor: Justin Solomon
TAs: David Palmer and Paul Zhang

Geometry Processing for Real-Time Pencil Sketching

Eric Zhang1 and Victor Rong2

1Harvard University
2Massachusetts Institute of Technology

Figure 1: Pencil sketches rendered in real time: torus SDF (top-left), Utah teapot mesh (top-right), and bunny mesh (bottom).

Abstract
We explore the task of drawing 3D objects, made of triangle meshes or implicitly represented as signed distance fields (SDFs),
in the art style of a pencil sketch. Several theoretical geometric tools, such as principal curvature, are helpful in planning the
stroke directions during rendering. We review, implement, and extend existing methods with geometry processing techniques.
In the process of exploring mesh curvature methods, we found difficulties in robustly selecting the size of triangles, local
tolerance to noise, and other parameters that affect output quality. Our primary contribution is a new scale-invariant algorithm
for estimating surface curvatures of an SDF within the graphics pipeline, which has been a previously unexplored topic in
the literature. This algorithm has the advantage of enabling real-time rendering of changing geometries at arbitrary scales
(modeled by implicit functions), without the noise sensitivity of previous mesh-based methods. Software artifacts can be found
on the project web page: https://pencil-sketching.vercel.app/.

1. Introduction

The goal of many non-photorealistic rendering methods is to pur-
sue images that efficiently and expressively convey information
about shape, while eliminating extraneous details. Line drawings
are a particularly effective medium for conveying geometric in-
formation, as many properties like stroke width, stroke direction,
hatching, tone, contour selection, and density can be freely adjusted
and combined with artistic intent. Therefore, our task is to render a
smooth surface in a way that resembles a pencil sketch.

One of the most important variables in a sketching algorithm is
the choice of line direction. As shown in [GIHL00], selecting line
directions based on principal curvatures is an effective means for
conveying surface shape in artistic drawings. Furthermore, princi-
pal curvatures are invariant of light direction, shading, and view
direction, which makes them an ideal candidate to be utilized in
rendering algorithms, such as in [PHWF01] and [LKL06]. How-
ever, an important issue that stops principal curvatures from be-
ing effectively used in practice is robustness to local noise. Trian-

https://pencil-sketching.vercel.app/

E. Zhang & V. Rong / Pencil Sketching

Figure 2: A stylized artwork image from [Qui15], rendered in real
time by ray tracing a signed distance field with WebGL.

gle meshes consist of many finite flat elements that approximate
a smooth 3D surface. Since surface curvature is an inherently lo-
cal property, it is very sensitive to small perturbations in the loca-
tions of points. Mesh-based methods have issues dealing with low-
fidelity and noisy meshes, such as those obtained from a 3D scan,
without additional smoothing steps. Even then, it is difficult and
error-prone to determine what scale of smoothing to supply. Too
high of a scale, and important surface features will be lost. Too low
of a scale, and the computed principal directions will be incoher-
ent. Sometimes we would even ideally desire adaptively choosing
smoothing scales throughout the mesh, as not all shape models are
regular with uniformly distributed near-equilateral triangles, which
further complicates the problem.

An alternative, fairly popular recent approach to geometry mod-
eling is to use signed distance fields, which are implicit functions
that mathematically describe the surface of a shape. These func-
tions can be quickly derived and naturally produce effects like ex-
trusion, transformation, constructive solid geometry, and rounding
of corners with very little modeling work. Signed distance fields
have also been used in various contexts like differentiable render-
ing and inverse graphics [PFS∗19], similar to other implicit repre-
sentations that lend themselves to backpropagation. They are also
used in real-time ray tracing contexts, as demonstrated in Figure 2.

Signed distance fields are mathematically elegant, have strong
smoothness properties, are scale-invariant, and are not subject to
the pathological cases that arise in badly formed polygonal meshes.
This makes them an ideal candidate for computing local properties
such as surface curvature directions.

In this project, we implement non-photorealistic pencil rendering
based on various curvature estimation algorithms described in the
literature and make the following contributions:

• A new scale-invariant method for principal curvature estima-
tion on implicit geometries modeled by a signed distance field.
• An efficient GPU implementation of our method that is suitable

for real-time rendering, including an interactive demonstration
that runs on any modern web browser using WebGL.

We also compare our SDF rendering method in efficiency and ro-
bustness to previous pencil sketching algorithms based on curvature
estimation on triangle meshes.

2. Related Work

Computation of curvature and the principal curvature directions
is a well studied problem. [Tau95] computes a per-vertex matrix
such that its eigenvalues correspond to terms easily expressed by
the principal curvature and its eigenvectors correspond to exactly
the principal curvature direction. [Rus04] uses the differences of
normals in each vertex’s 1-ring to estimate its second fundamental
form.

Also in non-photorealistic rendering, an object-space algorithm
for suggestive contours was derived based on radial curvature
[DFRS03]. More modern work on neural contours build on these
same ideas, relying on curvature features to learn to create line
drawings [LNHK20].

Prior work in [MBF92] uses partial derivatives of 3D biomedi-
cal images to compute principal directions at the isosurface of an
intensity function. However, unlike our work, they use discrete 3D
images with scalar voxel values. Our method is simpler and uses
implicit signed distance functions to model shapes at any level of
detail, which makes it practical for ray-traced rendering. It is also
easy to parallelize without having to send large amounts of 3D in-
tensity data to the GPU.

Real-time pencil sketching was explored in [LKL06], which pro-
poses an interior shading method that aligns the strokes with a
discrete principal curvature direction at each vertex. The computa-
tion for this follows [ACSD∗03] which also performs smoothing on
the directional field. An older cross-hatching paper is [PHWF01],
which uses stylized textures. Both of these papers use principal cur-
vature estimation methods on a triangle mesh.

We were inspired to build WebGL-based interactive rendering
demos by the non-photorealistic sketches in [San20]. Similarly, our
interactive demos interfaced with [Lys16], a lightweight layer on
top of standard graphics APIs. There are other alternatives we did
not pursue but are worth mentioning for completeness. The primary
fully featured open-source library in web graphics is three.js,
which supports various materials, volumetrics, lights, and objects
in 3D scenes. Also, we explored running compute-intensive geom-
etry processing code on the CPU using WebAssembly [HRS∗17],
which is a compilation target of C++ and Rust. This has been used
in industry by companies such as Figma to achieve real-time per-
formance in their graphical applications [Wal17].

3. Technical Approach

In this section, we describe the geometric methods that we used to
compute principal directions on a surface. We also provide a more
detailed explanation of signed distance fields.

3.1. Curvature Approximation on Triangle Meshes

We tested both Taubin’s algorithm and Rusinkiewicz’s algorithm
for computing the per-vertex principal curvature directions to be
used in directing the stroke textures [Tau95, Rus04]. The backbone
of both is to estimate a matrix for each vertex from their 1-ring
neighborhood whose eigenvectors are the principal curvature di-
rections.

E. Zhang & V. Rong / Pencil Sketching

Taubin’s algorithm constructs a curvature matrix, which in the
continuous setting is defined by

Mp :=
1

2π

∫ π

−π

κθtθtT
θ dθ.

This matrix is not the second fundamental form, but it has the
principal curvature directions as its eigenvectors. Taubin’s method
discretizes this integral by considering a weighted sum across the
mesh edges adjacent to p.

Rusinkiewicz’s algorithm attempts to directly find the second
fundamental form II using its definition as the shape operator. For
each triangle neighboring a point p, we can approximate the per-
face Weingarten matrix as it applies to each edge of the triangle.
More precisely, say that our triangle has edges e12,e23,e31 and ver-
tex normals n1,n2,n3. Let u,v be an orthonormal basis of the tri-
angle’s plane. We want to solve for II such that for all i and j,

II
(

ei j ·u
ei j ·v

)
=

(
(n j−ni) ·u
(n j−ni) ·v

)
.

This gives six equations to solve for the three unknown entries of
II. A simple least squares fit gives a good II. These face-wise ma-
trices are then carefully transformed into the plane orthogonal to
the vertex normal of p and then aggregated in a weighted average.

As both methods relied heavily on the 1-ring neighborhood, en-
suring the correct connectivity of the mesh was crucial. Often, two
faces in a mesh are parts of separate sections of the mesh’s surface
(e.g. the sides of a box), and combining their vertices would lead
to incorrect smooth shading of vertex normals. We used the edge
split modifier in Blender to enable smooth computation of vertex
normals, even at sharp corners [Ble21].

Furthermore, we can adapt these methods to be done in a single
pass of the fragment shader. Following [PVK16], we can compute
screen-space curvature given the screen-space vertex positions and
normals.

3.2. Signed Distance Fields

Signed distance fields (SDFs) provide an alternative representation
of geometric shapes, modeled by implicit functions. Instead of ap-
proximating the surface of a compact shapeM by a collection of
discrete triangles, an SDF is a function fM : R3→ R taking

fM(p) = min
x∈M

d(x,p),

where d represents the Euclidean metric on R3. Given a man-
ifold in R3, signed distance fields satisfy the Eikonal equation
‖∇ fM(p)‖2 = 1 almost everywhere, due to being a distance func-
tion. Also, we can see that fM(p) = 0 if and only if p ∈M.

Furthermore, if we assume that the manifoldM is the boundary
of some 3D shape, then we can modify the signed-distance field
definition to satisfy the Eikonal equation at almost all points onM
as well, by setting the value of the distance function to be nega-
tive at points in the interior of the shape. For example, the signed
distance field representing a sphere of radius r would be

fM(p) = ‖p‖2− r.

The contours of this function are visualized in Figure 3.

Figure 3: Cross-section of the sphere SDF (red is negative).

Signed distance fields can either be constructed by hand or au-
tomatically generated by shape learning techniques from computer
vision, as in [LNHK20]. For the hand-constructed case, there are
several explicit formulas for simple SDFs listed in [Qui13], along
with various combinators that produce transformations, binary con-
structive solid geometry, and smooth variants of those operations.
This allows one to compactly represent a large number of shapes,
both geometric and organic, with very little modeling effort.

In contrast to triangle meshes, which can be rasterized as indi-
vidual faces or ray traced with mesh acceleration data structures (as
described in [PJH16]), implicit shapes with SDFs can be efficiently
ray traced using the field as a functional distance estimator. This has
the advantage of enabling real-time ray tracing without specialized
graphics hardware, and it is also scale-invariant, with no individual
face data being required.

3.3. Curvature Estimation on SDFs

One interesting property of SDFs, as an implicit representation,
is greater smoothness at local scales compared to explicit triangle
meshes. The main problem with curvature estimation algorithms,
such as those described in §3.1, is sensitivity to local noise. Often-
times, surface fairing algorithms are needed to correct for this. In
addition, curvature estimation algorithms tend to be expensive and
run in a separate step from the rendering process.

In this section, we describe our new curvature estimation algo-
rithm, which can compute principal curvatures at each point of a
signed distance field. The algorithm is easily parallelizable, run-
ning in real time as an integrated part of the rendering process.

The first step is to compute the normal vector. Suppose that we
have a point p on a 2-manifoldM⊂ R3, with SDF fM. Then, the
outward-pointing normal vector n is given by the gradient

n =∇ fM(p).

We can estimate this quantity without needing to take symbolic

E. Zhang & V. Rong / Pencil Sketching

Figure 4: Generated textures at varying shades of darkness.

derivatives, by instead taking values of the signed distance field at
points close to p and using the discrete difference quotient.

After estimating the normal vector, let u and v be orthogonal
vectors that form a positively-oriented orthonormal basis for the
tangent plane TpM. We can approximate the second fundamental
form at p by the Hessian matrix

H(x,y) [fM(p+ xu+ yv)] =
[

fxx fxy
fxy fyy

]
,

where for small ε > 0, we approximate the mixed partials by

fxx ≈
1
ε2 [fM(p+ εu)+ fM(p− εu)−2 fM(p)] ,

fyy ≈
1
ε2 [fM(p+ εv)+ fM(p− εv)−2 fM(p)] ,

fxy ≈
1

4ε2 [fM(p+ εv+ εu)+ fM(p− εv− εu)

− fM(p+ εv− εu)− fM(p− εv+ εu)].

Since this is a symmetric 2×2 matrix, it can be diagonalized to es-
timate the principal curvature directions (eigenvectors) and eigen-

values at p. Letting D=
√

(fxx− fyy)2−4 f 2
xy, the eigenvectors and

corresponding eigenvalues are

λ1 =
fxx + fyy +D

2
, v1 = (2 fxy)u+(fyy− fxx +D)v,

λ2 =
fxx + fyy−D

2
, v2 = (2 fxy)u+(fyy− fxx−D)v.

These mathematical formulas are branchless and can be efficiently
evaluated in parallel in a GPU shader, computing surface principal
curvatures at every point visible on the screen.

4. Implementation

In this section, we describe the practical design of our method and
share some of our choices, challenges, and tradeoffs in writing a
rendering pipeline for pencil sketches. Similar to [San20], we im-
plemented our software artifacts in WebGL to produce interactive
demos that can be run on any modern web browser. We feel that
this choice makes the software much more accessible.

4.1. Texture Generation

Textures for a variable number of shades are created to be used in
the rendering pipeline. For each texture, a number of strokes are
simulated upon an integer array representing the canvas. The path
of each stroke follows a simple forward integration equation with
a small amount of white noise added. The strokes wrap around the
edges of the texture. For each point which this path steps on, the

neighborhood of pixels with a distance of 0.5 pixels from the point
is shaded in where the weight is stronger for close pixels. The per-
pixel shading is done as described in §5.1 of [LKL06].

To simulate the variety of shades seen in Figure 4, each texture is
parameterized by a number d ∈ [0,1] representing the average dark-
ness of the texture with 0 being a white texture with no strokes and
1 being completely black. This term implicitly controls the num-
ber of strokes draw. When the strokes are being drawn, the sum
of values among the pixels, which are each between 0 and 255, is
maintained. When it drops below 255 ·(1−d)WH, no more strokes
are drawn and the texture is complete. The weight of each stroke is
also proportional to d2 though it has a lower limit so that the strokes
are not unrealistically light.

4.2. Screen-Space Texture Blending

After textures are synthesized, they need to be painted onto a sur-
face and blended, taking advice from the principal curvature field.
This is a nontrivial task, so we will describe our approach for both
mesh rasterization and SDF ray tracing.

4.2.1. Rasterization

In the rasterization pipeline, since we have triangles at each ver-
tex, we can simply texture each triangle individually using a blend
of three textures. First, every vertex has its precomputed curvature
directions loaded from Taubin’s method, and we compute Gourard
shading based on vertex normals and a simple lighting algorithm.
We also project the curvature, which is a unit vector in R3, into
screen space based on the projective camera. These three pieces of
data (color, normal vector, and screen-space curvature vector) are
outputs of the vertex shader.

Then, at each fragment of a triangle, we compute its barycentric
coordinates. We then blend textures centered at each vertex shader,
chosen from our precomputed map based on the luma intensity at
that vertex. The textures are rotated in screen space to prevent dis-
tortion and ensure even pencil lines, based on the curvature vector.
This produces smoothly varying lines that avoid the sharp discon-
tinuities seen in previous methods, such as [PHWF01].

As a technical detail, we had to create three distinct vertices for
each face to have enough information for our rendering method.
We could not share vertices between adjacent faces. The reason is
that the standard OpenGL pipeline does not support fetching in-
formation about individual vertices of the triangle within the frag-
ment shader, so we instead encoded that information directly by
using three varying outputs. This slightly increases memory foot-
print, since the number of vertices is usually around half the num-
ber of faces in a regular mesh, but this issue can be resolved fairly
reasonably by rendering the faces in batches.

4.2.2. Real-Time Ray Tracing

In the case of real-time ray tracing, our algorithm effectively com-
putes world-space principal curvature vectors at each point in the
camera frame. However, it is unclear how to use these curvatures to
render an image that appears smooth and well-textured.

One approach that we initially tried was to sample a value at each

E. Zhang & V. Rong / Pencil Sketching

Figure 5: Composited textures (top), normal vectors (bottom-
left), and principal curvature directions (bottom-right) for a torus
melded with a sphere using SDF operations.

point based on a texture coordinate sampled from a smooth func-
tion of the curvature direction and screen coordinates. In the case of
constant curvature direction, this would ideally tile the same pencil
texture repeatedly on the screen. We used 2D screen-space pro-
jections of the curvature direction, rather than the 3D world-space
curvature direction, due to RP2 being non-orientable. However, this
approach had several issues:

• Composited textures would form strange hyperbolic artifacts and
Moiré patterns, since the principal curvature direction would
smoothly vary, distorting the straight lines of the pencil textures.
• If we used many textures (one texture for each of the 256 levels

of brightness), then in most areas of the image where lighting
is non-constant, the selected texture at each pixel would change
rapidly, forming a noisy pattern that loses the pencil effect. Con-
versely, using few textures leads to undesirable banding.

To fix these problems, we devised the following two-pass rendering
method. In the first pass, we compute luma, normals, and princi-
pal directions at each pixel and store that as texture data in frame-
buffers. Then, in the second pass, we fix some scale parameter S
and divide the screen into a grid of (S× S)-pixel squares. At each
vertex of unit squares, we sample the luma intensity and use that
to select one of our precomputed pencil textures. Then, we tile that
texture centered at the vertex and rotate it so that the lines are point-
ing in the principal direction. At each interior point of a grid cell,
we perform bilinear interpolation on the texture values centered at
each of the four vertices. We then adjust the color by scaling to
match the true Phong shaded luma value, compute contours using
the normal value, and output the final color.

The advantage of this method is that texturing becomes locally
flat rather than distorted, so our pencil textures retain convincing
straight line patterns. It also allows us to efficiently implement ren-
dering without having to regenerate textures at every pass. An ex-
ample of our compositing is shown in Figure 5, and the grid does
not produce noticeable artifacts in this example.

4.3. Cartoon Contours

Our method for rendering contours in both mesh and SDF renderers
was based on screen-space partial derivatives. We modified a short

Figure 6: Top view of the Gaussian curvatures of a torus computed
with Taubin’s algorithm (left), Rusinkiewicz’s algorithm (middle),
and the exact analytic equations (right).

segment of fragment shader code from [Reu20]. This code consid-
ers the term v ·n, where v is the view ray and n is the surface nor-
mal. It draws a contour in regions where v ·n/‖∇(v ·n)‖1 is larger
than a threshold, approximating a constant-width line whenever the
surface normal is orthogonal to the view ray. This is similar to the
basic screen-space algorithm described in [DFRS03]. We did not
implement suggestive contours computed with screen-space partial
derivatives of curvature direction, although it would be easy to ex-
tend our method to support this.

5. Results

We qualitatively examine results for both mesh curvature approx-
imation and SDF ray tracing methods. Both methods easily run in
real-time in the browser, at greater than 30 FPS, but the exact speed
depends on factors like screen size and graphics hardware. We omit
a detailed performance analysis due to lack of standard hardware
(such as a high-end graphics card).

5.1. Curvature Approximation on Triangle Meshes

As detailed in §3.1, we evaluated the mesh curvature algorithms
in [Tau95] and [Rus04] and used both in rendering the stylized im-
ages. We found that both gave visually aesthetic directional fields,
though Rusinkiewicz generally gives more accurate approxima-
tions. The stroke directions defined in Figure 8 reflect the bunny’s
curvatures but are noisy due to the smaller bumps of the mesh, par-
ticularly in the middle and lower regions of the bunny. We also
demonstrate real-time curvature computations on a triangle mesh
in Figure 9.

On the other hand, the principal curvature values κmin and κmax
were often incorrect in both algorithms. Figure 6 illustrates the
Gaussian curvature, which is equal to κminκmax, on a torus. We con-
jecture that the reason why the curvature values are wrong while the
directions are mostly aligned correctly is because area weighting in
the algorithms affects the eigenvalues of the obtained matrix more
strongly than it affects the eigenvectors.

The incorrect eigenvalues impacts which eigenvector is selected
as the minimal principal curvature direction. Ironically, the Taubin
implementation looks better on many meshes because it is wrong.
The Taubin implementation has a tendency for the eigenvalues to
never swap order. This means that it consistently chooses the same
eigenvector, whereas the Rusinkiewicz implementation swaps be-
tween perpendicular directions as visible in Figure 7.

E. Zhang & V. Rong / Pencil Sketching

Figure 7: Utah teapot rendered using the minimal principal di-
rections from the Rusinkiewicz implementation. The strokes defin-
ing the bottom of the teapot, though correct, go against the strokes
defining the walls.

5.2. Real-Time Ray Tracing of SDFs

We provide two large, full-resolution example images that were
rendered from a signed distance field and our compositing method.
Figure 10 shows a common constructive solid geometry model,
which was built out of combining simple sphere, cylinder, and cube
SDFs. Once again, there are not any noticeable artifacts from the
grid-based algorithm. The cylindrical interior portions of the shape
have consistent principal curvature directions. However, the flat and
spherical portions have no distinguished principal directions, since
the second fundamental form has two equal eigenvalues.

Figure 11 illustrates an organic shape, built out of a smooth
union operation between two tori and a rounded pill primitive.
Here, the principal curvature algorithms are able to produce con-
sistent orientations on a vast majority of the surface. Our contour
algorithm based on screen-space partial derivatives also produces a
very smooth and desirable result.

5.3. Limitations

As discussed in our analysis of Figure 10, many geometric shapes
have sections that are perfectly spherical or flat. This leads to prob-
lems when trying to compute principal directions, as they are am-
biguous. To smoothly shade such shapes, we would need to extend
the principal curvature direction field smoothly to regions that lack
a well-defined direction, by perhaps using parallel transport, vector
field diffusion, or other methods. We would be interested in future
work that explores this.

6. Contributions

Eric wrote the framework and initial shader code for the project,
developed the SDF principal curvature algorithm, modeled and
cleaned some meshes with Blender, and implemented the rendering
pipeline. Victor implemented pencil texture generation and devel-
oped Python scripts to load meshes, subdivide them, and compute
curvature with algorithms by Taubin and Rusinkiewicz. Both au-
thors contributed to background research and writing.

References
[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEVILLERS O., LÉVY

B., DESBRUN M.: Anisotropic polygonal remeshing. In ACM SIG-
GRAPH 2003 Papers. ACM, 2003, pp. 485–493. 2

[Ble21] BLENDER ONLINE COMMUNITY: Blender - a 3d modelling and
rendering package, 2021. URL: http://www.blender.org. 3

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SAN-
TELLA A.: Suggestive contours for conveying shape. In ACM SIG-
GRAPH 2003 Papers. ACM, 2003, pp. 848–855. 2, 5

[GIHL00] GIRSHICK A., INTERRANTE V., HAKER S., LEMOINE T.:
Line direction matters: an argument for the use of principal directions in
3d line drawings. In Proceedings of the 1st International Symposium on
Non-photorealistic Animation and Rendering (2000), pp. 43–52. 1

[HRS∗17] HAAS A., ROSSBERG A., SCHUFF D. L., TITZER B. L.,
HOLMAN M., GOHMAN D., WAGNER L., ZAKAI A., BASTIEN J.:
Bringing the web up to speed with WebAssembly. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation (2017), pp. 185–200. 2

[LKL06] LEE H., KWON S., LEE S.: Real-time pencil rendering. In
Proceedings of the 4th international symposium on Non-photorealistic
animation and rendering (2006), pp. 37–45. 1, 2, 4

[LNHK20] LIU D., NABAIL M., HERTZMANN A., KALOGERAKIS E.:
Neural contours: Learning to draw lines from 3d shapes. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (2020), pp. 5428–5436. 2, 3

[Lys16] LYSENKO M.: Regl: Fast functional WebGL. https://
github.com/regl-project/regl, 2016. 2

[MBF92] MONGA O., BENAYOUN S., FAUGERAS O. D.: From par-
tial derivatives of 3-d density images to ridge lines. In Visualization in
Biomedical Computing’92 (1992), vol. 1808, International Society for
Optics and Photonics, pp. 118–129. 2

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: Deepsdf: Learning continuous signed distance func-
tions for shape representation. In Proceedings of the Conference on
Computer Vision and Pattern Recognition (2019), pp. 165–174. 2

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKELSTEIN A.: Real-
time hatching. In Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (2001), p. 581. 1, 2, 4

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically based ren-
dering: From theory to implementation. Morgan Kaufmann, 2016. 3

[PVK16] PRANTL M., VÁSA L., KOLINGEROVÁ I.: Fast screen space
curvature estimation on GPU. In VISIGRAPP (1: GRAPP) (2016),
pp. 151–160. 3

[Qui13] QUILEZ I.: 3d distance functions. https://iquilezles.
org/www/articles/distfunctions/distfunctions.
htm, 2013. 3

[Qui15] QUILEZ I.: Greek temple. https://www.shadertoy.
com/view/ldScDh, 2015. 2

[Reu20] REUSSER R.: Sphere eversion. https://rreusser.
github.io/explorations/sphere-eversion/, 2020. 5

[Rus04] RUSINKIEWICZ S.: Estimating curvatures and their derivatives
on triangle meshes. In Proceedings. 2nd International Symposium on 3D
Data Processing, Visualization and Transmission, 2004. 3DPVT 2004.
(2004), IEEE, pp. 486–493. 2, 5

[San20] SANCHEZ J.: Sketch: Explorations on cross-hatching, engraving,
and similar non-photorealistic rendering. https://github.com/
spite/sketch, 2020. 2, 4

[Tau95] TAUBIN G.: Estimating the tensor of curvature of a surface from
a polyhedral approximation. In Proceedings of IEEE International Con-
ference on Computer Vision (1995), IEEE, pp. 902–907. 2, 5

[Wal17] WALLACE E.: WebAssembly cut Figma’s load time by 3x.
https://tinyurl.com/5s34axju, 2017. 2

http://www.blender.org
https://github.com/regl-project/regl
https://github.com/regl-project/regl
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://www.shadertoy.com/view/ldScDh
https://www.shadertoy.com/view/ldScDh
https://rreusser.github.io/explorations/sphere-eversion/
https://rreusser.github.io/explorations/sphere-eversion/
https://github.com/spite/sketch
https://github.com/spite/sketch
https://tinyurl.com/5s34axju

E. Zhang & V. Rong / Pencil Sketching

Figure 8: Rendered triangle mesh of a bunny, from the Stanford 3D Scanning Repository.

Figure 9: Cloth simulation with principal directions computed in real time. This demo can be found on the project web page.

E. Zhang & V. Rong / Pencil Sketching

Figure 10: Constructive geometry model rendered using an SDF built from sphere, cylinder, and cube primitives.

Figure 11: Blobs model rendered using an SDF, illustrating an organic shape with well-defined principal curvature.

